import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String Base = declarative_base() print(sqlalchemy.__version__) # where <path> is relative: engine = create_engine('sqlite:///test.db') # Unix/Mac - 4 initial slashes in total # engine = create_engine('sqlite:////absolute/path/to/foo.db') # # Windows # engine = create_engine('sqlite:///C:\\path\\to\\foo.db') # # Windows alternative using raw string # engine = create_engine(r'sqlite:///C:\path\to\foo.db') # 定义映射类User,其继承上一步创建的Base class User(Base): # 指定本类映射到users表 __tablename__ = 'users' # 如果有多个类指向同一张表,那么在后边的类需要把extend_existing设为True,表示在已有列基础上进行扩展 # 或者换句话说,sqlalchemy允许类是表的字集 # __table_args__ = {'extend_existing': True} # 如果表在同一个数据库服务(datebase)的不同数据库中(schema),可使用schema参数进一步指定数据库 # __table_args__ = {'schema': 'test_database'} # 各变量名一定要与表的各字段名一样,因为相同的名字是他们之间的唯一关联关系 # 从语法上说,各变量类型和表的类型可以不完全一致,如表字段是String(64),但我就定义成String(32) # 但为了避免造成不必要的错误,变量的类型和其对应的表的字段的类型还是要相一致 # sqlalchemy强制要求必须要有主键字段不然会报错,如果要映射一张已存在且没有主键的表,那么可行的做法是将所有字段都设为primary_key=True # 不要看随便将一个非主键字段设为primary_key,然后似乎就没报错就能使用了,sqlalchemy在接收到查询结果后还会自己根据主键进行一次去重 # 指定id映射到id字段; id字段为整型,为主键,自动增长(其实整型主键默认就自动增长) id = Column(Integer, primary_key=True, autoincrement=True) # 指定name映射到name字段; name字段为字符串类形, name = Column(String(20)) fullname = Column(String(32)) password = Column(String(32)) # __repr__方法用于输出该类的对象被print()时输出的字符串,如果不想写可以不写 def __repr__(self): return "<User(name='%s', fullname='%s', password='%s')>" % (self.name, self.fullname, self.password) def get_dynamic_table_name_class(table_name): # 定义一个内部类 class TestModel(Base): # 给表名赋值 __tablename__ = table_name __table_args__ = {'extend_existing': True} username = Column(String(32), primary_key=True) password = Column(String(32)) # 把动态设置表名的类返回去 return TestModel # 查看映射对应的表 print(User.__table__) # 创建数据表。一方面通过engine来连接数据库,另一方面根据哪些类继承了Base来决定创建哪些表 # checkfirst=True,表示创建表前先检查该表是否存在,如同名表已存在则不再创建。其实默认就是True Base.metadata.create_all(engine, checkfirst=True) # 上边的写法会在engine对应的数据库中创建所有继承Base的类对应的表,但很多时候很多只是用来则试的或是其他库的 # 此时可以通过tables参数指定方式,指示仅创建哪些表 # Base.metadata.create_all(engine,tables=[Base.metadata.tables['users']],checkfirst=True) # 在项目中由于model经常在别的文件定义,没主动加载时上边的写法可能写导致报错,可使用下边这种更明确的写法 # User.__table__.create(engine, checkfirst=True) # 另外我们说这一步的作用是创建表,当我们已经确定表已经在数据库中存在时,我完可以跳过这一步 # 针对已存放有关键数据的表,或大家共用的表,直接不写这创建代码更让人心里踏实 # engine是2.2中创建的连接 Session = sessionmaker(bind=engine) # 创建Session类实例 session = Session() if __name__ == "__main__": # 创建User类实例 ed_user = User(name='ed', fullname='Ed Jones', password='edspassword') # 将该实例插入到users表 session.add(ed_user) # 一次插入多条记录形式 session.add_all( [ User(name='wendy', fullname='Wendy Williams', password='foobar'), User(name='mary', fullname='Mary Contrary', password='xxg527'), User(name='fred', fullname='Fred Flinstone', password='blah') ] ) # 当前更改只是在session中,需要使用commit确认更改才会写入数据库 session.commit() our_user = session.query(User).filter_by(name='ed').first() print(our_user)